新闻分类 NEWS CATEGORY
新闻动态 news
联系我们 contact us
手机:
电话:
邮箱:
地址:
隧道塌方原因及处理措施
添加时间:2018-02-08
  

  目前国内在建和已建隧道工程中,均出现过不同程度的塌方现象,给建设和运营带来了较大的危害。在此,根据新奥法原理分析隧道塌方形成的可能原因。

  新奥法的主要原理是在岩体力学特征和变形规律以及莫尔理论的基础上,通过量测手段对开挖后围岩进行动态监测,并根据围岩自稳的时间和空间效应确定爆破强度、开挖速度、初支参数以及辅助施工方法等。其力学机理是利用围岩自稳能力,及时施作初期支护和二次衬砌并与围岩形成整体受力结构。从此原理分析隧道塌方的原因如下:

  (一)洞身工程地质条件差,围岩自稳能力低,施工时没来得及进行初期支护即发生坍塌。如掌子面围岩软弱、岩体破碎、地下水发育、洞身埋深浅。或隧区通过不良地质地段,如断层褶皱带、膨胀岩地区以及高应力岩层等。这些复杂地质条件往往有不可预见性,给设计和施工的准确性和安全性带来较大困难。见图1。

  (二)设计过程中未能准确判断隧区地质条件,没有充分考虑不良地质对隧道的影响,特别是没有及时与现场实际地质条件进行跟踪分析,导致在围岩分级、支护参数设计以及开挖进尺要求等不合理。

  (三)施工过程中没有对诸如软弱围岩、浅埋地层等不良地质体进行注浆、超前支护预处理,保证不了围岩足够的自稳能力和自稳时间;开挖爆破效果差,导致围岩应力集中,出现滑塌现象;没有按照设计和规范要求进行施工,如初支背后有空洞、初支厚度不够、锚杆的长度和数量不足以及钢架的间距过大等,致使围岩岩体间不能连成整体受力结构,保证不了支护强度与围岩滑移的力学平衡。

  (四)新奥法施工是一个动态过程,对隧道进行实时监控是重要环节之一。目前很多隧道塌方造成人员伤亡、财产损失的原因就是监控不到位。不能在塌方隐患出现前掌握围岩变形规律,不能及时预报围岩变形情况,并进行必要的加强措施,最终导致塌方的形成。

  总体施工原则为强加固、短清渣、快支护、实回填、勤量测。对于小塌方可以直接进行塌体处理,对于塌方影响范围较大的分为初期处理和塌体处理两部分。

  1. 封闭塌体面,对塌方露出的新岩面挂网喷射混凝土,防止岩体风化和继续塌落;

  2. 必要时对塌方体实施注浆固结或设置混凝土封堵墙,以待下一步能更好的施工掘进;

  4. 处理塌方影响段内侵限的初支,如注浆加固,抽换变形钢架、加设锚杆等;

  5. 若塌方通顶,要在塌体地表修筑截排水设施,阻止地表水对塌方体的影响。

  1. 加强超前支护,增设大管棚或双排小导管,保证开挖的安全性。 2. 利用人工风镐,挖机配合,进行预留核心土台阶法开挖,控制好进尺长度,并及时施作初期支护。

  全程做好地表沉降、拱顶下沉、洞内周边收敛的监控量测工作,并用数据指导施工。

  元山隧道位于军马一场西南方向祁连山中高山区,平均海拔3200~3800m,最高海拔为3292m。地形起伏不大,相对高差约50m,隧道最大埋深70m。起始里程为DK365+105~DK366+021,全长916m。全隧位于R-10000m的平曲线‰的单面下坡。隧道进口DK365+174~+184段于2011年3月19日晚22:00 左右发生塌方。如图2所示。

  2011年3月19日晚22:00许,DK365+180处拱顶开始掉渣,2分钟后出现塌方,现场无人员伤亡及机械破损,根据实际量测数据,塌方里程为DK365+174~+184段落,长度约为10m,塌方面积为15×15m,深度约为10m,塌方总方量约1500m3。

  塌方现场形态为DK365+174~+184拱顶至地表岩土体垂直下沉,拱顶形成天窗,形状为椭圆形,如图3所示。原施作的初支钢架在拱腰连接处被折断,边墙钢架受塌方影响变形。塌方松散物沿隧道走向前后坡积范围约20米,塌方体多为块石、碎石及粗角砾土,岩性以砂岩为主,含少量炭质泥岩夹层。塌方处周边岩层较为松动,可能出现再次塌方。

  塌方发生时,隧道掌子面开挖里程为DK365+250,仰拱里程为DK365+159,二次衬砌未施作。塌方段初期支护施作时间为2010年9月~12月。

  隧道通过区位于F8断层影响带,DK365+174~+184段地层为第四系全新统坡积粗角砾土(Qdl64),洞身为石炭系上统泥质砂岩(CSs3),强风化,岩体破碎多呈碎块及砂砾状,埋深10~20m,隧道围岩分级为Ⅴ级,按Ⅴc-2型衬砌参数支护,超前支护为Φ42超前小导管注浆,全断面I22a型钢钢架,间距0.5m,全环30cm厚C30喷射混凝土。采用三台阶七步开挖法施工。

  A、该段处于F8断层影响带,岩体呈碎裂结构和松散结构,节理裂隙发育,大多数为张开节理,围岩完整性和稳定性较差;

  B、隧道穿越的地层岩性主要为泥质砂岩,硬度低且为强风化状态,掌子面及塌方体均出现厚度不等的炭质泥岩夹层,隧区工程地质条件差,见图4;

  C、塌方段拱顶距地表10~20m,属浅埋段,因高原季节性冻融现象,浅埋围岩受冻融水及反复冻胀的影响,降低自身稳定性。

  该段为已施作初支后塌方,塌方原因可能是设计未充分考虑隧区特殊地质条件如断层影响带围岩破碎,对隧道支护参数的影响,致使支护强度不够,设计参数不合理。

  B、洞身围岩为硬度较低的泥质砂岩,强风化,含炭质泥岩夹层,软弱围岩掌子面开挖未采用控制爆破技术,一方面光面爆破效果差,围岩应力集中,另一方面爆破装药量过大,震动效应强,可能对已初支段的稳定性造成影响;

  C、塌方段工程地质条件差,属于浅埋段,塌方前地表和洞内变形监测频率不够,信息反馈不及时,未能在塌方隐患出现前进行加强支护处理,如围岩径向注浆加固以防止塌方;

  D、施工过程未严格按照设计施工,特别是初支背后是否存在空洞,锚杆的长度及根数、钢架的型号及间距等是否符合设计还需要进一步确认。

  塌方处理分三个阶段,先对塌方影响段围岩进行初步加固,然后处理塌方堆积体并重新施作该段初期支护,在完成塌方段二次衬砌后对塌方空腔进行回填。塌方处理全过程实施监控量测,实时提供围岩变形情况,以指导施工。

  A、洞内径向注浆加固:对塌方影响段DK365+169~+174实施径向注浆加固,防止塌方范围扩大。注浆管采用Φ22打孔钢花管,长4m,间距1.5m,梅花形布置,注浆液采用水泥-水玻璃双液浆。

  B、洞内空腔锁口:在洞内空腔边缘加设两榀I22a工字钢锁口,并在拱脚处分别打设4根锁脚锚管。

  C、塌腔边坡喷砼加固:塌方体空腔周边坡度较陡,为防止边坡掉块,首先对边坡按1:0.5进行刷坡处理,然后喷射15cm厚C25混凝土封闭坡面。施工时在边坡角预留踏步和施工平台。

  A、采用环形开挖预留核心土法逐步开挖塌方堆积体,主要采用人工风镐掘进,小型挖机配合。每开挖循环进尺控制在50cm,并及时换除损坏的钢架,架设新I22a工字钢,间距50cm。钢架环向连接钢筋用Φ22钢筋,间距50cm。铺设Φ8钢筋网,网格间距20cm×20cm。在未塌方边墙初支面加设径向锚杆,规格按设计图处理。

  B、掘进一段距离后,在钢架上部安装外模,模具采用木模,厚度不低于3cm,模板外侧利用钢筋固定稳固,模板之间缝隙要紧密,保证不漏浆。然后初喷25cm厚C30混凝土。

  C、当掘进到DK365+184时,为保证塌方前壁的稳定性,实施加强支护,即在拱顶140°范围增设双排Φ42超前小导管并注浆,长度4m,间距40cm,环向搭接1m,上层外插角控制在35°,下层外插角控制在5°~10°。对原剥落的初支面进行复喷混凝土至设计厚度。

  在该段围岩基本稳定后,及时施作仰拱、拱墙防排水设施和二次衬砌,待混凝土强度达到设计要求且未移动台车前,对塌腔进行回填处理。回填料采用坍渣,对称分层回填夯实。在接近表层应设置50cm厚隔水粘土层,防止地表水下渗对岩土体及隧道结构的破坏,表层土应用腐殖土覆盖。塌方空腔回填结束后,在塌方地表周边1m范围外修筑0.4m深,0.3m宽截水沟,防止地表水流入塌方空腔中的回填土体。

  在塌方处理全过程对洞内、地表进行监控量测,及时反馈分析量测数据,指导施工。

  1) 塌方腔回填结束前:在DK365+154~+164和DK365+184~+204里程段纵向10m、横向5m布置测点,横向布置范围为隧道中线m范围,每天观测一次。如图6所示。

  2) 塌方腔回填结束后:在DK365+174~+184里程段按上述方案布点观测。

  监控量测严格按照有关规范和设计进行,每天测量完毕及时进行数据分析,向施工技术员和现场负责人反馈监测结论。当洞内水平收敛值大于5mm/d或地表监测发现异常应立即通知现场人员撤离,并及时向上级回报。当塌方段处理结束,洞内收敛小于0.2mm/d后方可停止监控。

  2、洞内主要由机械作业,缩短作业时间。现场有专人指挥,一有险情,立即组织撤离。

  4、机械刷坡和回填土时,不得置于顺线、及时跟进仰拱和二衬,保证该段围岩稳定安全。

  根据以上方案结合现场实际,安全有序的完成元山隧道塌方处理各项工作,目前洞内及地表仍在进行监控测量,围岩情况和初支变形处于安全可控状态。

  1、软弱浅埋围岩段的隧道施工,须严格按照监控量测方案对洞内和地表实施动态监测,及时分析量测数据,反馈信息用以指导施工;

  3、确保初支混凝土与岩面的粘结力、初支的强度符合规范设计,使初支与岩体形成强有力的支撑系统;淘彩乐淘彩乐淘彩乐彩票百乐门彩票百乐门彩票百乐门来酷吧来酷吧来酷吧